Data-Driven Sparse Polynomial Chaos Expansion for Models with Dependent Inputs

نویسندگان

چکیده

Polynomial chaos expansions (PCEs) have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs. PCEs for models with independent inputs extensively explored literature. Recently, different approaches proposed dependent expand use more applications. Typical include building based on Gram-Schmidt algorithm or transforming into However, two their limitations regarding computational efficiency and additional assumptions about input distributions, respectively. In this paper, we propose a data-driven approach build sparse The recursively constructs orthonormal polynomials using set monomials correlations output. not only reduces number minimally required observations but also improves numerical stability efficiency. Four examples are implemented validate algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion

We discuss the arbitrary polynomial chaos (aPC), which has been subject of research in a few recent theoretical papers. Like all polynomial chaos expansion techniques, aPC approximates the dependence of simulation model output on model parameters by expansion in an orthogonal polynomial basis. The aPC generalizes chaos expansion techniques towards arbitrary distributions with arbitrary probabil...

متن کامل

Adaptive sparse polynomial chaos expansion based on least angle regression

Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may it be intrusive (i.e. of Galerkin typ...

متن کامل

Time-Dependent Polynomial Chaos

Conventional generalized polynomial chaos is known to fail for long time integration, loosing its optimal convergence behaviour and developing unacceptable error levels. The reason for this loss of convergence is the assumption that the probability density function is constant in time. By allowing a probability density function to evolve in time the optimal properties of polynomial chaos are re...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Time-dependent generalized polynomial chaos

Article history: Received 11 May 2009 Received in revised form 11 June 2010 Accepted 21 July 2010 Available online 13 August 2010

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2022

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4010619